

Armament Technology For The Future Combat System

RArefaction wavE guN RAVEN Propulsion

Eric Kathe
US Army, TACOM-ARDEC Benét Laboratories

Recoil Impulse Metric

- M551 116% Ogorkiewicz Limit
- M1A1 49% Ogorkiewicz Limit
- M8 AGS 128% Ogorkiewicz Limit
- M60A1 43% Ogorkiewicz Limit
- **★ FCS FOOB 218% Ogorkiewicz Limit**
- FCS RAVEN 54% Ogorkiewicz Limit
- Ogorkiewicz Limit
- ----- Traditional Limit for M1A1 Lethality
 - Traditional fighting vehicle design limits the ratio of recoil impulse to vehicle mass.
 - It is important to note, FCS is not traditional.

A Graphic Recoil Example

Recoil Effects

• Recoil energy:

- Integral of recoil force by recoil stroke.
- May be reduced via heavier gun, fire out of battery, or reduced impulse.

Recoil Impulse:

- Integral of recoil force by recoil duration.
- May be reduced via muzzle brakes or RAVEN.

RAVEN

Advantages:

- Dramatic reduction in recoil momentum
 - 75% for KE Rod
- Substantial reduction in heat transfer to bore
 - 50% from the bore evacuator to muzzle
- Recoilless achievable with only modest efficiency loss.

Disadvantages:

- Back blast
- Cannon complexity

Pressure Wave Animation

In collaboration with

Close Combat Armament Center

Rarefaction Wave Progression

M256/M829A2 RAVEN

Computed using back-propagation of rarefaction wave front from the muzzle at shot exit

Close Combat Armament Center

Rarefaction Wave Progression

M256/M829A2 RAVEN

 The speed of the rarefaction wave front includes gas velocity and sonic velocity contributions.

6.5

25mm & 155mm RAVEN's

155mm Zone 6 XM297

Recoil Reduction

Simulation incorporating an expansion nozzle.

M256/M829A2 RAVEN

Gas Velocity Animation

RAVEN Bore Heat Reduction

Momentum Reduction Potential

Comments on Back Blast

- Flash suppressors reduce signature by cooling escaping propellant gas using a nozzle.
- Gases Exiting the RAVEN
 Nozzle are directed away from the vehicle.

Cone flash suppressor for WWII AAA

Comments on Back Blast

• Danger zone extent behind prior large caliber recoilless is similar to current TOW missiles.

Some External Guns

Russian SPH Pedestal Mount

GDLS LPT LAV
Pedestal Mount

French AMX Oscillating Turret

BENET

Close Combat Armament Center

Inertial Breech Operated R105 RAVEN 105mm Swing Chamber FCS-MR Gun.

Mass Behind Trunnions Results in Improved Balance and Stabilization

> Swing Chamber From Multi-Role Gun to Avoid Age Long Recoilless Rifle Loading Dilemma

lose Combat Armament Center

Applications

Close Combat Armament Center

RAVEN 35MM Demonstrator

To Be Fired August 2001

Close Combat Armament Center

Metrics[†]

Technology Readiness Level

- Currently: TRL 3
 - Analytical and experimental critical function and/or characteristic proof of concept.
- Soon to be: TRL 4
 - Firing single shot 30mm Gau-8 RAVEN will achieve:
 "Component and or breadboard validation in relevant environment."

Research & Development Degree of Difficulty (R&D³)

- R&D³ Level IV
 - Probability of Success in "Normal" R&D effort 50%.
 - Difficulty is anticipated...
 - Multiple technological approaches need to be pursued.

[†] Reference: John C. Mankins, Advanced Projects Office, "Technology Readiness Levels," April 6, 1995 & "Research & Development Degree of Difficulty", March 10, 1998, NASA

Summary

- RAVEN propulsion provides revolutionary performance in recoil mitigation.
- A new class of cannon may be on the horizon.

